

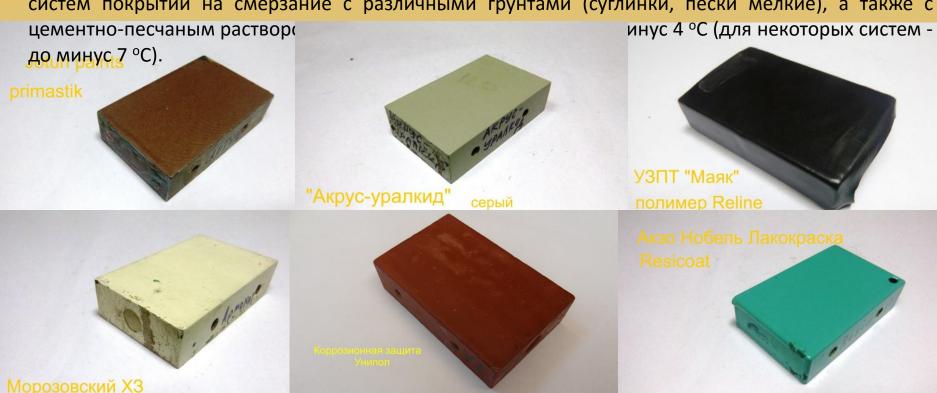
ОАО «Фундаментпроект»

ОСНОВНЫЕ РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ ВЛИЯНИЯ АНТИКОРРОЗИОННЫХ ПОКРЫТИЙ НА НЕСУЩУЮ СПОСОБНОСТЬ СВАЙНЫХ ФУНДАМЕНТОВ В МЕРЗЛЫХ ГРУНТАХ

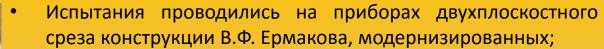
докладчик: нач. Лабораторного центра ОАО «Фундаментпроект» Иоспа А.В.

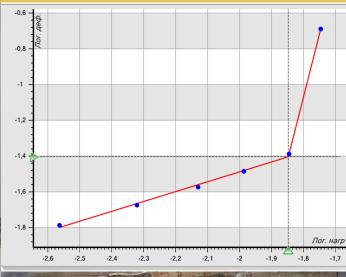
В докладе использованы материалы подразделений ОАО «Фундаментпроект»: СИМГ, ОИГС, ОПОФ А также разработки Аксенова В.И. (Фундаментпроект), Иванова Е.С. (ВНИИК)

МОРОЗНОЕ ПУЧЕНИЕ И КОРРОЗИЯ МЕТАЛЛИЧЕСКИХ СВАЙ


- Подавляющая часть грунтов слоя сезонного промерзания-протаивания обладает, в различной степени, пучинистыми свойствами.
- Для обеспечения несущей способности фундаментов в мерзлых грунтах чаще всего используются свайные конструкции (преимущественно, материал горячекатанные стальные трубы, в некоторых регионах железобетонные заводские сваи).
- Грунты сезонно-талого (сезонно-мерзлого) слоя часто являются агрессивными по отношению к материалу фундаментов.
- Многолетнемерзлые грунты Арктического побережья, Якутии нередко засолены, в засоленых мерзлых толщах встречаются криопэги. Такие грунты, нередко, имеют высокую коррозионную агрессивность по отношению к материалу свай и в мерзлом состоянии.
- Один из основных методов борьбы с коррозией свайных фундаментов использование лакокрасочных и пленочных покрытий.
- Основным требованием к используемым для подземной части фундаментов покрытиям, помимо эффективности является долговечность.
- При проектировании фундаментов с использованием покрытий для расчета на действие касательных сил морозного пучения требуются значения удельных касательных сил пучения для используемых материалов.

ОПРЕДЕЛЕНИЕ УДЕЛЬНЫХ КАСАТЕЛЬНЫХ СИЛ ПУЧЕНИЯ


- В последние годы на рынке появляется большое количество различных покрытий для антикоррозионной защиты металлических фундаментов, в том числе достаточно прочных долговечных для использования на подземных элементах фундаментов.
- Одной из форм проверки противопучинных свойств новых покрытий являлось проведение испытаний на срез по поверхности смерзания грунта с материалом фундамента (металлических плашек, покрытых лакокрасочным составом).
- СИМГ ОАО «Фундаментпроект» в период с 2008 г. по настоящее время было испытано около 20 систем покрытий на смерзание с различными грунтами (суглинки, пески мелкие), а также с


МЕТОДИКА ПРОВЕДЕНИЯ ЭКСПЕРИМЕНТОВ

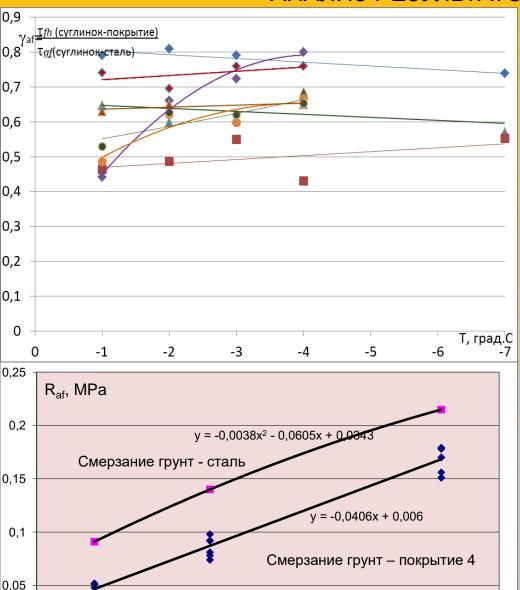
Методика проведения испытаний – по ГОСТ 12248-2010 (96),Руководству физических, ПО определению теплофизических и механических характеристик мерзлых грунтов (НИИОСП, 1974).

ХАРАКТЕРИСТИКИ ИСПЫТАННЫХ ЛАКОКРАСОЧНЫХ ПОКРЫТИЙ

Состав покрытия	Толщина общая мкм от производителя	Толщина общая мкм (Измеренная)	Шероховатость, мкм	Цвет	Долговечность (условия ХЛ1)	Производитель
1	2	3	4	5	6	7
Грунт АК 070 ЭмальХВ-124	280	41	R _a =2,53 R _Z =15,1	Шаровый	3-5 лет	Рекомендован СНиП2.03.11-85
Грунт ХС-010 Эмаль-785	280	23	R _a = 6,3 R _z = 27,9	Зелёный	3-5лет	Рекомендован СНиП2.03.11-85
Грунт PU – Zink PU-Combination 100	310	276	R _a = 7,0 R _z = 28,8	Чёрный	Не менее 22 лет	ООО «Технохим»; ООО «СТИЛПЕЙНТ-РУ»
Грунт PU — Zink Покрывной слой PU — Zink	160	100	R _a = 3,4 R _z = 14,5	Серый	Не менее 22лет	ООО «Технохим» ООО «СТИЛПЕЙНТ-РУ»
Грунт PU — Zink PU-Abrasiv	260	257	$R_a = > 100$ $R_z = > 1000$	Белый (поверхность шероховатая)	Не менее 22 лет	ООО «Технохим» ООО «СТИЛПЕЙНТ-РУ»
Цинотан Ферротан	290-320	308	R _a = 7,8 R _Z = 46,7	Чёрный наждак	Не менее 15 лет	ЗАО НПХ «ВМП»
Изолэп –primer Изолэп –mio	300-320	327	R _a = 7,6 R _Z =26,6	Шаровый (гладкий)	Не менее 18 лет	ЗАО НПХ «ВМП»
Изолэп –mastic	290-310	68	R _a = 11,0 R _Z = 37,4	Шаровый (неровный)	12-18 лет	ЗАО НПХ «ВМП»
Изолэп –mastic (ручная очистка)	290-320	188	R _a = 4,9 R _z = 19,6	Шаровый (неровный) Ручная очистка.	12-18 лет	ЗАО НПХ «ВМП»
Цинотан+пол- тон-ур	290-320	230	R _a = 2,0 R _z = 8,0	Шаровый	не мене 24 лет	ЗАО НПХ «ВМП»

ХАРАКТЕРИСТИКИ ИСПЫТАННЫХ ЛАКОКРАСОЧНЫХ ПОКРЫТИЙ

Состав покрытия	Толщина общая мкм от производителя	Толщина общая мкм (Измеренная)	Шероховатость, мкм	Цвет	Долговечность Условия (ХЛ1)	Производитель
«Армокот» (на основе полисилоксанов модифицированных)	100-250	201	R _a = 4,5 R _z = 29,4	Белый	Не менее 25 лет	ЗАО «Морозовский химический завод»
«Resicoat» R-726+R641 эпоксидное покрытие	700-1000	773	R _a = 0,11 R _z = 0,63	Бирюзовый	Не менее 25 лет	ООО «Акзо Нобель лакокраска»
«Primastic» 2-х компонентная эпоксидная мастика	170	166	R _a = 1,45 R _Z = 6,15	Красно- тонированный	Не менее 25 лет	Группа компаний «Йотун»
Эмаль «Унипол» АЦ совместно с СБЭ III	220-260	170	R _a = 1,6 R _z = 9,1	Терракотовый	Не менее 15 лет	ЗАО НПК «Коррзащита»
Марка «Reline» (Термоусаживаемый полимер)	700-1000	970	R _a = 0,97 R _z = 5,4	Чёрный (гладкий)	Не менее 25 лет	ЗАО «Уральский завод полимерных технологий»«Маяк»
Марка «Акрус-Терма»	50-100	142	R _a = 3,5 R _Z = 17,7	Шаровый	Не менее 10 лет	ООО «Антикоррозионные защитные покрытия»
Акрус-эпокс (грунт- эмаль), акрус-полиур (эмаль)	200	247	R _a = 0,45 R _z = 2,2	Белый	Не менее 10 лет	ООО «Антикоррозионные защитные покрытия»
Акрус-уралкид фест(грунт), акрус-уралкид(эмаль)	150	202	R _a = 0,8 R _z = 3,8	Серый	Не менее 15 лет	ООО «Антикоррозионные защитные покрытия»
Сталь 09Г2С, сталь 20 Без покрытия После фрезерования		15	R _a = 1,6-6,3 R _z = 15,7-27,8			ОАО «Фундаментпроект»



АНАЛИЗ РЕЗУЛЬТАТОВ ИСПЫТАНИЙ

T, °C

-4.5

-3

-3,5

-1,5

-1

-2

-2,5

-0,5

- Покрытия, ДЛЯ которых характерно проявление механического износа (истончение покрытия) при проведении быть нескольких циклов не ΜΟΓΥΤ рекомендованы для использования;
- Параметры шероховатости после проведения испытаний для ряда покрытий также изменяются;
- Большая часть испытанных покрытий снижает силы смерзания, и соответственно, касательные силы пучения на 30-50% по сравнению со сталью без покрытия;

Покрытия

- по-разному ведут себя отрицательных температурах. различных Так, есть покрытия, эффективность снижения СИЛ смерзания которых зависит температуры испытаний
- Покрытия имеют различную эффективность в зависимости от разновидности (песок, глинистый грунт, ЦПР)
 - ЗАО «УЗПТ Для покрытия производства Маяк» были проведены сравнительные свайные испытания с покрытием и без него и получена хорошая (до 10%) сходимость с лабораторного результатами моделирования.

СРАВНЕНИЕ РЕЗУЛЬТАТОВ ПОЛЕВЫХ И ЛАБОРАТОРНЫХ ИСПЫТАНИЙ

- 2014г. ОАО «Фундаментпроект» провел лабораторные и испытания свай «СМОТ», покрытых оболочками противопучинистыми термоусаживаемыми ОСПТ «Reline». Сваи являются совместной разработкой ЗАО «ОЗСК», ЗАО «УЗПТ Маяк» при участии специалистов ОАО «Фундаментпроект»
- Результаты лабораторных испытаний полностью (расхождение результатов по нормативным величинам менее 10%) совпали с результатами испытаний натурных свай (всего проведено 4 испытания натурных свай с покрытием и более 20 лабораторных испытаний)
- Коэффициент эффективности данного покрытия 0,6, отношению к результатам, полученным для сваи без покрытия (труба стальная горячекатанной поверхности)

Заключение

Предпринятое нами исследование показало, что практически все испытанные покрытия обеспечивают снижение прочности смерзания в 20-48%. Эти результаты могут учитываться при расчете свай на морозное пучение в качестве одного из вариантов противопучинных мероприятий, а также при расчете несущей способности свай в коррозионно агрессивных многолетнемерзлых грунтах.

Выполненный анализ характеристик испытанных покрытий показал необходимость проведения контроля качества защитных покрытий и оценку скорости коррозии металла (особенно в верхней части свайного фундамента, находящейся в деятельном слое) в процессе эксплуатации сооружений.

СПИСОК ЛИТЕРАТУРЫ

- 1. Руководство по эффективным способам устройства свайных фундаментов на вечномерзлых грунтах в нефтегазовом строительстве / НИИОСП им. Н.М. Герсеванова. М.: ИКЦ ПФ, 2005.
- 2. ГОСТ 9.602-2005 «Единая система защиты от коррозии и старения. Сооружения подземные. Общие требования защиты от коррозии». М.: Стандартинформ, 2006.
- 3. Егоров В.В., Елисеев Ю.Г., Иванов В.С. Подбор и исследование систем лакокрасочных материалов, обеспечивающих эффективную противокоррозионную защиту стальных свайных фундаментов с учётом требований по шероховатости материалов. Научно-технический отчёт по договору №03/1/10 от 22.03.2010г. М.: ООО «Технохим», 2010.
- 4. Рекомендации по применению кремнийорганических соединений в борьбе с морозным выпучиванием фундаментов/НИИОСП им.Н.М.Герсеванова.Стройиздат, 1974
- 5. Руководство по определению физических, теплофизических и механических характеристик мерзлых грунтов. М.: Стройиздат, 1973.
- 6. ГОСТ 12248-2010 «Методы лабораторного определения характеристик прочности и деформируемости». М.: Стандартинформ, 2011.
- 7. Информационная электроизмерительная диагностическая система KrioLab для прочностных испытаний. Сертификат соответствия № РОСС Ru.ME 20, НО 2286.
- 8. Защита от коррозии металлических и железобетонных мостовых конструкций методом окрашивания. Овчинников И.Г., Иванов Е.С., и др. Саратов, 2014